If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=11
We move all terms to the left:
d^2-(11)=0
a = 1; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1·(-11)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*1}=\frac{0-2\sqrt{11}}{2} =-\frac{2\sqrt{11}}{2} =-\sqrt{11} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*1}=\frac{0+2\sqrt{11}}{2} =\frac{2\sqrt{11}}{2} =\sqrt{11} $
| 2(s+3)=4s+5+s | | 3m-4=11m-68 | | 4+2x=-2x+52 | | 5s+23=123 | | -3=x/3-4 | | 5x*2=10x+4 | | r−51=382 | | x/4+15=19 | | S-2(s-3)=-4s+5 | | S-2(s+3)=-4s+5 | | f+207=681 | | S+2(s+3)=4s+5 | | -S-2(-s-3)=-4s+-5 | | -S+2(s-3)=-4s+-5 | | -S+2(s+3)=4s+-5 | | S-2(s+3)=-4s+-5 | | S+2(s+3)=-4s+-5 | | 8x-1200=100 | | 5x+13=49 | | S-2(s+3)=4s+-(-5) | | S-2(s+3)=4s+-5 | | 9x+16+6x+15=(19x+3) | | 41=8x-7 | | 3x-41=22 | | 3n+15=24 | | 250-8x=70 | | X+2/6=x+1/4 | | 7/10x-3=11 | | 7x+6-9x-24=180 | | -15x-16=61 | | 5(x-3)=10(3x-3) | | 2(x-3)=5x-2 |